Born–Infeld Action on Discrete Spaces

Liangzhong Hu,1*,***³ Liangyou Hu,2 and Adonai S. Sant'Anna1**

We apply Connes' noncommutative geometry to a finite *n*-point space. The explicit Born-Infeld actions on this *n*-point space and *n* copies of a manifold are obtained.

KEY WORDS: Born–Infeld action; Fredholm module; discrete space.

1. INTRODUCTION

In recent years, the continuum Born–Infeld theory (Born and Infeld, 1934) in its commutative and noncommutative settings has become relevant in the description of *D*-brain dynamics (see, for example, Seiberg and Witten, 1999; Tseytlin, 2000). The Born–Infeld actions on finite group spaces was constructed in Aschieri *et al*. (2003).

In this paper, we apply Connes' noncommutative geometry (Connes, 1985, 1994) to a finite *n*-point space. By explicit Born–Infeld actions on this *n*-point space, *n* copies of a manifold are obtained.

2. DIFFERENTIAL CALCULUS ON *n***-POINT SPACE**

We briefly review the differential calculus on a *n*-point space. More detailed account of the construction can be found in Cammarata and Coquereaux (1995), Dimakis and Müller-Hoissen (1994a,b), and Hu and Sant'Anna (2002, 2003).

Let *M* be a space of *n* points $i_1, \ldots, i_n (n < \infty)$, and *A* the algebra of complex functions on *M* with $(fg)(i) = f(i)g(i)$. Let $p_i \in A$ defined by

$$
p_i(j) = \delta_{ij}.\tag{1}
$$

¹ Department of Mathematics, Federal University of Paraná, C.P. 019081, Curitiba, PR, 81531-990, Brazil.

² Dongbei University of Finance and Economics, Dalian 116025, People's Republic of China.

³ To whom correspondence should be addressed at Department of Mathematics, Federal University of Paraná, C.P. 019081, Curitiba, PR, 81531-990, Brazil; e-mail address: hu@mat.ufpr.br.

It follows that p_i is a projector in $A(i = 1, \ldots, n)$. Each $f \in A$ can be written as

$$
f=\sum_i f(i)p_i,
$$

where $f(i) \in \mathbb{C}$, a complex number. The algebra A can be extended to a universal differential algebra $\Omega(\mathcal{A}) = \bigoplus_{r=0}^{\infty} \Omega_r(\mathcal{A})$ (where $\Omega^0(\mathcal{A}) = \mathcal{A}$) via the action of a linear operator $d : \Omega^r(\mathcal{A}) \to \Omega^{r+1}(\mathcal{A})$ satifying

$$
d1 = 0, d2 = 0, d(\omega_r \omega') = (d\omega_r)\omega' + (-1)^r \omega_r d\omega',
$$

where $\omega_r \in \Omega^r(\mathcal{A})$. 1 is the unit in $\Omega(\mathcal{A})$.

Let $\varepsilon = \mathcal{A}^m$ be a free \mathcal{A} -module. A connection on ε is a linear map $\nabla : \mathcal{E} \to$ $\mathcal{E} \otimes_A \Omega^1(\mathcal{A})$ such that

$$
\nabla(\psi_a) = (\nabla \psi)_a + \psi \otimes da,\tag{2}
$$

for all $\psi \in \mathcal{E}$, $a \in \mathcal{A}$.

Any connection on $\mathcal E$ is of the form $\nabla = d + A$ with $A^* = -A$. *A* is called a connection 1-form. We can regard *A* as an element of $M_m(\mathcal{A}) \otimes_{\mathcal{A}} \Omega^1(\mathcal{A})$. Here $M_m(\mathcal{A})$ is a $m \times m$ matrix algebra over \mathcal{A} . A can be written as $A = \sum_{i,j} A_{ij} p_i dp_j$ with $A_{ij} \in M_m(\mathbb{C})$, a $m \times m$ complex matrix, and $A_{ii} = 0$, a $m \times m$ zero matrix. From $A^* = -A$, we have

$$
A_{ij}^* = A_{ji}.\tag{3}
$$

Let $G \subset End_{\mathcal{A}}(\varepsilon) = M_m(\mathcal{A})$ be a gauge group of ε . Then $G = \sum_i G_i p_i$ with $G_i \subset$ *Mm*(**C**). Notice that

$$
G_1 = G_2 = \cdots = G_n = G. \tag{4}
$$

The connection 1-form *A* satisfies

$$
A' = g A g^{-1} + g d g^{-1}.
$$
 (5)

Here $g = \sum_i g_i p_i \in G$, and $g_i \in G_i = G$.

The curvature of ∇ reads

$$
\Theta = dA + A^2. \tag{6}
$$

 Θ transforms in the usual way, $\Theta' = g \Theta g^{-1}$. One has $\Theta^* = \Theta$. Θ satisfies the Bianchi identity:

$$
d\Theta + A\Theta - \Theta A = 0.
$$

3. FROM FREDHOLM MODULE TO BORN–INFELD ACTION ON *M*

One of the basic ideas in Connes' noncommutative geometry is the Fredholm module (Connes, 1994, and references therein). Applying the Fredholm module

Born–Infeld Action on Discrete Spaces 317

to the universal algebra $\Omega(\mathcal{A})$ discussed in the previous section, one can obtain a more useful graded differential algebra on the finite space *M*.

The Fredholm module (A, H, D) is composed as the following (Hu, 2000; Hu and Sant'Anna, 2002, 2003): A is the algebra on *M* defined in the previous section. H is a *n*-dimensional linear space over the complex field **C**. The action of $\mathcal A$ on $\mathcal H$ is given by

$$
\pi(f) = \begin{pmatrix} f(1) & 0 & \cdots & 0 \\ 0 & f(2) & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & f(n) \end{pmatrix}
$$

with $f \in A$. *D* is a Hermitian $n \times n$ matrix with $D_{ij} = \overline{D}_{ji}$. The following equality defines an involutive representation of $\Omega(\mathcal{A})$ in H,

$$
\pi(da) = [D, \pi(a)],\tag{7}
$$

where $a \in A$. To ensure the differential d satisfies

$$
d^2 = 0,\t\t(8)
$$

one has to impose the following condition on *D*,

$$
D^2 = \mu^2 \mathbf{I},\tag{9}
$$

where μ is a real constant and **I** is the $n \times n$ identity matrix. Since the diagonal elements of *D* commute exactly with the action of A , we can ignore the diagonal elements of *D*, i.e.,

$$
D_{ii} = 0.\t\t(10)
$$

The projector p_i can be expressed as a $n \times n$ matrix,

$$
(\pi(p_i))_{\alpha\beta} = \delta_{\alpha i} \delta_{\beta i}.
$$
\n(11)

From Eq. (7) and (11), it follows that

$$
(\pi(p_i dp_j))_{\alpha\beta} = \delta_{\alpha i} \delta_{\beta j} D_{ij}.
$$
 (12)

The connection matrix H on M is given by

$$
H_{ij} = D_{ij}(A_{ij} + 1). \tag{13}
$$

Here **1** is the identity in the gauge group *G*, where *G* is defind in Eq. (4). One can find that H_{ij} is a $m \times m$ complex matrix with $H_{ij}^* = H_{ji}$. This means that $H = (H_{ij})$ is a $n \times n$ Hermitian matrix with its elements $m \times m$ submatrices. The diagonal elements of *H* satisfy

$$
H_{ii} = 0.\t\t(14)
$$

From (5) and (13), the transformation rule of H_{ij} reads

$$
H'_{ij} = g_i H_{ij} g_j^{-1}.
$$
 (15)

From (6), the curvature matrix $\pi(\Theta)$ reads

$$
\pi(\Theta) = H^2 - \mu^2 I,\tag{16}
$$

where $I = (I_{ij}) = (\delta_{ij} \mathbf{1})$. The transformation rule of $\pi(\Theta_{ij})$ satisfies

$$
\pi(\Theta'_{ij}) = g_i \pi(\Theta_{ij}) g_j^{-1}.
$$
\n(17)

We recall the continuum *p*-dimensional Born–Infeld action for nonlinear electrodynamics (Born and Infeld, 1934) in flat space is

$$
S = \int_{V^p} d^p x \sqrt{\det(\delta_{\mu\nu} + F_{\mu\nu})},\tag{18}
$$

where F is the field strength. The action (18) can be generalized to the non-Abelian case. Then the determinant in (18) is not a number. We can define its absolute value $|\det|$ as the positive square root in $\sqrt{\det \det^{\dagger}}$. The generalized Born–Infeld action is

$$
S = \int_{V^p} d^p x Tr \sqrt{|\det(\delta_{\mu\nu} + F_{\mu\nu})|}.
$$
 (19)

The trace can be symmetrized (Tseytlin, 2000, and references therein).

Now we construct the non-Abelian Born–Infeld action on the finite *n*-point space *M*. The analogue of $\delta_{\mu\nu} + F_{\mu\nu}$ becomes

$$
T_{ij} = \mathbf{1}\delta_{ij} + \pi(\Theta_{ij}) = (1 - \mu^2)\mathbf{1}\delta_{ij} + (H^2)_{ij},\tag{20}
$$

and transforms under the gauge transformation in the same way as $\pi(\Theta_{ij})$:

$$
T'_{ij} = g_i T_{ij} g_j. \tag{21}
$$

The determinant of *T* is unchanged under the gauge transformation:

$$
\det T' = \det T. \tag{22}
$$

Therefore, the non-Abelian Born–Infeld action on *M* reads

$$
S = Tr\sqrt{|\det(T_{ij})|}
$$

= Tr\sqrt{|\det((1 - \mu^2)1\delta_{ij} + (H^2)_{ij})|} (23)

Example 1. When $\mu^2 = 1$, $S = Tr|\det(H_{ii})|$.

Example 2. The *U*(1) Born–Infeld action on *M* reads

$$
S = \sqrt{|\det(T_{ij})|}
$$

= $\sqrt{|\det((1 - \mu^2)\delta_{ij} + (H^2)_{ij})|}$ (24)

When $\mu^2 = 1$, $S = |\det(H_{ij})|$. Here H_{ij} is a complex number.

4. BORN–INFELD ACTION ON *n* **COPIES OF A MANIFOLD**

Let V be an oriented and connected smooth manifold and M , as the previous sections, a *n*-point space. We see that $V \times M$ is a disconnected manifold consisting of *n* copies of *V*.

We briefly review the gauge theory on *n* copies of *V* (Hu and Sant'Anna, 2002, 2003). Denote the differential on *M* by d_f , i.e., the differential *d* in previous sections is replaced by d_f . Let d_s be the usual differential on *V*, and *d* the total differential on $V \times M$. It follows that

$$
d = d_s + d_f. \tag{25}
$$

The nilpotency of *d* requires that

$$
d_s d_f = -d_f d_s. \tag{26}
$$

The connection *A* has a usual differential degree and a finite-difference degree (α, β) adding up to 1:

$$
A^{(1,0)} = \sum_{i} A_i p_i.
$$
 (27)

It is the continuous part of *A*. A_i is a Lie algebra valued 1-form on V_i and $A_i^* = -A_i$.

$$
A^{(0,1)} = \sum_{i,j} A_{ij} p_i \, d_f p_j. \tag{28}
$$

It is the connection 1-form on *M*, and is well studied in the previous section.

We see that the curvature $\pi(\Theta)$ has a usual differential degree and a finitedifference degree (α, β) adding up to 2:

$$
\Theta_{ij}^{(2,0)} = F_i \delta_{ij},\tag{29}
$$

Here F_i is the curvature of A_i , $F_i = d_s A_i + A_i \wedge A_i$. $\Theta_{ii}^{(2,0)}$ obeys the transformation rule,

$$
\Theta_{ii}^{\prime(2,0)} = g_i \Theta_{ii}^{(2,0)} g_i^{-1},
$$

where $g_i \in G_i$, and G_i is the gauge group on V_i . Let G be the gauge group on V, then $G = G_1 = \ldots = G_n$. $\Theta^{(\bar{2},0)}$ is the continuous part of the field strength.

Next, we look at the component $\Theta^{(1,1)}$ of bi-degree (1,1):

$$
\Theta_{ij}^{(1,1)} = d_s H_{ij} + A_i H_{ij} - H_{ij} A_j.
$$
\n(30)

One can find that $\Theta_{ij}^{(1,1)}$ transforms as the following:

$$
\Theta_{ij}'^{(1,1)} = g_i \Theta_{ij}^{(1,1)} g_j^{-1}.
$$

 $\Theta^{(1,1)}$ corresponds to the interaction between *V* and *M*.

We can define a covariant derivative of H_{ij} as

$$
D_{\mu}H_{ij} = \partial_{\mu}H_{ij} + A_{i\mu}H_{ij} - H_{ij}A_{j\mu}.
$$
 (31)

Therefore $\Theta_{ij}^{(1,1)} = D_{\mu} H_{ij} dx^{\mu}$. Here the Einstein sum convention for the indice μ is adopted.

Finally, we have the component $\Theta^{(0,2)}$ of degree (0,2):

$$
\Theta^{(0,2)} = H^2 - \mu^2 \mathbf{I},\tag{32}
$$

with

$$
\Theta_{ij}^{\prime (0,2)} = g_i \Theta_{ij}^{(0,2)} g_j^{-1}.
$$

 $\Theta_{ij}^{(0,2)}$ corresponds to the field strength on the finite space M.

Now we construct the Born–Infeld action on the *n* copies of *V*. The curvature $\pi(\Theta)$ can be formally written as

$$
\pi(\Theta) = \begin{pmatrix} \Theta^{(2,0)} & \Theta^{(1,1)} \\ \Theta^{(1,1)} & \Theta^{(0,2)} \end{pmatrix} \tag{33}
$$

Using a trick in Aschieri *et al.*, (2003), we consider the algebraic identity

$$
\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & BD^{-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{pmatrix} \begin{pmatrix} 1 & 0 \\ D^{-1}C & 1 \end{pmatrix}
$$

This implies

$$
\det\begin{pmatrix} A & B \\ C & D \end{pmatrix} = [\det(A - BD^{-1}C)][\det D] \tag{34}
$$

Let

$$
K_{\mu\nu} = [A - B(D^{-1})C]_{\mu\nu}
$$

= $g_{\mu\nu}$
$$
\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}
$$

$$
+\begin{pmatrix} F_{1\mu\nu} & 0 & \cdots & 0 \\ 0 & F_{2\mu\nu} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & F_{n\mu\nu} \end{pmatrix} - D_{\mu}HT^{-1}D_{\nu}H, \qquad (35)
$$

where $g_{\mu\nu}$ is the metric on the manifold *V*, and $T = (T_{ij})$ is defined in (20). Notice that all the matrices in (35) have n rows and *n* columns with their elements $m \times m$ submatrices. One can find that $\det(K_{\mu\nu})$ is unchanged under the gauge transformation:

$$
\det(K'_{\mu\nu}) = \det(K_{\mu\nu}).\tag{36}
$$

Hence, the Born–Infeld action on $V \times M$ reads

$$
S = \int_{V^p} d^p x Tr \sqrt{|\det(K_{\mu\nu}) \det(T_{ij})|}.
$$
 (37)

REFERENCES

- Aschieri, P., Castellani, L., and Isaev, A. P. (2003). Discretized Yang–Mills and Born–Infeld actions on finite group geometries. *International Journal of Modern Physics* A **18**, 3555.
- Born, M. and Infeld, L. (1934). Foundations of the new field theory. *Proceedings of Royal Society* A **144**, 425.
- Cammarata, G. and Coquereaux, R. (1995). Comments about Higgs fields, noncommutative geometry and the standard model. In *Lecture Notes in Physics*, *Vol. 469*, Springer, Berlin, pp. 27–50. (hepth/9505192).
- Connes, A. (1994). Noncommutative differential geometry. *Publ. Math. I. H. E. S.* **62**, 257.
- Connes, A. (1994). *Noncommutative Geometry*, Academic Press, New York.
- Dimakis, A. and Muller-Hoissen, F. (1994a). Differential calculus and gauge theory on finite sets. *Journal of Physics A: Mathematical and General* **27**, 3159.
- Dimakis, A. and Muller-Hoissen, F. (1994b). Discrete differential calculus: Graphs, topologies and gauge theory. *Journal of Mathematical Physics* **35**, 6703.
- Hu, L.-Z. (2000). *U*(1) *Gauge Theory Over Discrete Space-Time and Phase Transitions*. (hepth/0001148).
- Hu, L.-Z. and Sant'Anna, S. S. (2002). Connes' spectral triple and U(1) gauge theory on finite sets. *Journal of Geometry and Physics* **42**, 296.
- Hu, L.-Z. and Sant'Anna, S. S. (2003). Gauge theory on a discrete noncommutative space.*International Journal of Theoretical Physics* **42**, 635.
- Seiberg, N. and Witten, E. (1999). String theory and noncommutative geometry. *The Journal of High Energy Physics* **9909**, 032.
- Tseytlin, A. A. (2000). Born–Infeld action, supersymmetry and string theory. In *The Many Faces of the Superworld, Yuri Golfand Memorial Volume*, M. A. Shifman, ed., World Scientific, Singapore, 417 pp.